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Abstract. In a decision-making context, multidimensional geospatial databases 
are very important. They often represent data coming from heterogeneous and 
evolving sources. Evolution of multidimensional structures makes difficult, 
even impossible answering to temporal queries, because of the lack of relation-
ships between different versions of spatial cubes created at different time. This 
paper proposes a semantic similarity model redefined from a model applied in 
the ontological field to establish semantic relations between data cubes. The 
proposed model integrates several types of similarity components adapted to 
different hierarchical levels of dimensions in multidimensional databases and 
also integrates similarity between features of concepts. The proposed model has 
been applied to a set of specifications from different inventory in Montmorency 
Forest in Canada. Results show that the proposed model improves precision and 
recall compared to the original model. Finally, further investigation is suggested 
in order to integrate the proposed model to SOLAP tools as future works.  

Keywords: Semantic similarity models, ontology, mapping between ontolo-
gies, geospatial data cubes.  

1   Introduction 

OLAP tools and their spatial extension SOLAP, which are based on multidimensional 
structures, were introduced to support analysis in a decision-making context and to al-
low users to easily access and explore the data according to various perspectives [1]. 
Multidimensional structures are composed of dimensions, measures and facts. Dimen-
sions are the analysis themes and can be spatial, typically having levels described by 
geometric objects, such as polygons, for cartographic representations. Measures are 
the numerical attributes analyzed against different dimensions. Facts express the value 
of measures with respect to a specific combination of dimensions members for differ-
ent aggregation levels. For example, the multidimensional structure can be made of the 
spatial dimension geography, formed of levels city < area < country, and measure birth 
rate. Multidimensional structure is brought to undergo evolution, affecting facts but 
also structure of dimensions [2], which are usually considered as static. Dimension 
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members can also be affected by semantic evolutions. An example of such is a modi-
fication resulting from the changes to a regulation affecting the management of a 
given territory. Such evolution of multidimensional structures affects temporal que-
ries, and may lead to false results, when result there is [3] [2] [4]. Existing approaches 
suggested to manage the evolution in multidimensional data cubes [5] [2] [6] [7] do 
not explicitly consider semantic evolution as they manage only the case of explicit 
data evolution, i.e. when evolution is realized by evolution operators (add, delete, 
merge members of schema of instances of dimension, etc.) Evolution can also happen 
when several multidimensional databases represent the same reality for different ep-
ochs, for example when the data are collected independently for the same territory 
every 10 years as in forestry in Quebec. In this case, relations between the seemingly 
similar databases are difficult to establish and the evolution problem is more complex 
to solve since we need to restore these relations to answer temporal queries. In order 
to answer this latter problem, this paper proposes a new approach of semantic map-
ping between data cubes. The proposed approach is based on an ontological approach 
for the assessment of semantic relations between members of different data cubes. 
Multidimensional structures of a same area and their metadata can be seen as an 
evolving ontology and thus a semantic similarity model can be used as a mapping 
function. This similarity model is adapted to complex data and is flexible enough to 
support several data types. It defines a specific measure of similarity for the aggre-
gated levels of a dimension hierarchy. Follow up on this work will show how the de-
veloped mapping function can support temporal queries processing in data cubes.  

The reminder of this paper is as follows: section 2 presents a state of the art on on-
tology mapping and semantic similarity models. Section 3 describes the proposed 
approach and the similarity model used as a mapping function between data cubes. 
Section 4 shows the application and evaluation of the proposed approach in a forestry 
context. In section 5, we conclude this article. 

2   State of Art on Ontology and Semantic Similarity Models 

A suitable approach to overcome problems of semantic heterogeneity and evolution 
lies in ontologies, which are specifically designed to represent semantics and knowl-
edge about data. In AI (Artificial Intelligence), ontology is defined as an explicit 
specification of a conceptualization [8]. In other words, an ontology is the outcome of 
a conceptual modeling process. Generally, the taxonomic structure of an ontology 
forms a graph where nodes represent concepts and arcs represent relations between 
them. An ontology thus constitutes an interesting framework for the discovery of se-
mantic relationships between concepts, upon which we have founded our approach, 
i.e. a multidimensional structure with metadata can be regarded as an ontology. 
Moreover, just like the multidimensional structure, ontologies evolve, following 
modifications of specifications, standards, definitions of concepts, etc. [9] [10] 
[11].Ontology mapping aims at establishing relationships between ontologies while 
preserving their own structure. Among the approaches of ontology mapping, some use 
a semantic similarity model to relate concepts [12] [13] [14]. Similarity models can be 
classified according to the representation of the concepts they use: graphs, features of 
concepts, information content-based models, vector space models or a combination of 
different types of models (hybrid models). 
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Similarity models using ontology graphs are based on the assumption that a hierar-
chy of concepts is organized according to semantic similarity lines. Consequently, 
concepts are similar if the distance which separates them in the graph is short, the dis-
tance being given by the shortest path along the arcs to join both concepts [15]. The 
distance between two nodes is not necessarily uniform, thus other models take into 
account local density of  nodes, depth of concepts in the graph, total depth of the 
graph and the force of the relations [16] [17] [18]. Models using features of concepts, 
based on set theory, are founded on the comparison of sets of features describing con-
cepts. The ratio model [19], also used in other approaches [20] [21], compares the in-
tersection set (common features) to the sets of exclusive features of each concept.  

Models based on information content stipulate that the similarity between two con-
cepts is getting higher as the shared information content increases. Information con-
tent of a concept is a logarithmic function of the probability of its components to ap-
pear in the ontology. Similarity between two concepts is given by the information 
content they share, i.e. by the information content of the first common parent in tax-
onomy [22]. According to another approach, information content of a concept is a 
function of the number of hyponyms and of the number of concepts in taxonomy [23]. 
Vector space models use the analogy where semantic proximity between concepts is 
represented by proximity in a vector space. This model is mainly used in information 
systems to represent documents, although it is also used for concepts in geometrical 
similarity models [24] [25], where those are represented by points or regions in a mul-
tidimensional conceptual space. The semantic distance between concepts is given by a 
metric, such as the Minkowski distance or cosine [26] in information systems. 

Finally, hybrid models, such as the Matching Distance model, merge properties of 
several models into one [20] [27] [25]. Matching Distance model [20] is based on the 
ratio model [19], integrates context and distance in ontology graph and was designed 
to associate spatial entity classes from different ontologies. In Matching Distance 
Model, global similarity is a weighted sum of similarity between the different types of 
features (attributes, parts and roles) of concepts, lexical similarity (name of concepts) 
and neighborhood similarity in the graphs of ontologies: 

1 2 1 2 1 2 1 2 1 2 1 2( , ) ( , ) ( ( , ) ( , ) ( , )) ( , )g l l c a a p p f f n nS c c S c c S c c S c c S c c S c cω ω ω ω ω ω= + + + +  (1) 

where the different similarities are given by an adaptation of the ratio model (shown 
in next section) and neighborhood similarity by : 
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N1 and N2 are entities forming the neighborhood of concepts in the ontology 
graph, α is the distance between concepts in graph and δ is the difference function be-
tween neighborhoods of concepts. This model has the advantage of being complete 
and to take into account the maximum of information contained in ontology, com-
pared to other models. However, it only considers features as words. This can be 
insufficient since spatial entity may be defined by more complex features such as do-
main values or texts. Also, it does not consider the degree of similarity between fea-
tures of concepts, nor the specificity of concepts from aggregated levels of graph. 
Based on this model, in this article we propose a new semantic similarity model that 
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overcomes these limitations and that can be used as a mapping function between 
members of the schema of instances of dimension. 

3   Proposed Approach 

The multidimensional structure and its metadata are considered as the ontology of the 
databases in order to evaluate semantic similarity between members of the schema of 
instances of dimensions in different cubes. First, the user defines the context which 
represents a set of concepts that share a feature of interest (for example ecological 
zone) and will be used to compute weights for different similarities. Similarity is then 
evaluated on three levels: between features of concepts, between concepts of the de-
tailed level (finest level of granularity in the schema of instances of dimension) and 
between concepts of aggregated levels. The global similarity allows computing the 
matrices of mapping which relate concepts from two levels of hierarchy of different 
cube versions. The proposed approach is shown on figure 1. 
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Fig. 1. Global approach for semantic mapping between evolving data cubes 

Weights for the different similarities are defined by computing relevance of each 
type of features using the principles of commonality or variability. Relevance follow-
ing the commonality principle (Pt

comm) is defined as the sum of the number of occur-
rences oi of each feature i of type t in the concepts definitions, divided by the number 
n of features in the context, while relevance computed with using the variability prin-
ciple (Pt

var) is defined as the converse of commonality principle. Weights are defined 
as following: 
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3.1   Theoretical Framework  

This section introduces basic definitions of our approach. First, we define the ontol-
ogy and concepts, and then the mapping function and matrix of semantic mapping 
that relate concepts of different versions of the ontology. The mapping function is 
based on the similarity model that will be defined in the next section. 
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Definition of Concepts. A concept c of a version Oi is defined such as c = {id_c, 
name_c, P, D, LD, Oi, t}, where id_c is the concept identifier, name_c is its name, P is 
a set of features (attributes, parts and functions) of the concept, D and LD are respec-
tively the dimension and the hierarchical level to which the concept belongs and t is a 
valid time interval for concept c. The set of features P may contain features which 
domain values are text or intervals given by specifications on concepts.  

Mapping Function. This ontology-like representation of the multidimensional struc-
ture forms a framework for discovering semantic relations between members of the 
different cubes. Semantic relations are established by a mapping function which quan-
tifies, by means of a semantic similarity measure, a similarity relation between two 
concepts. This mapping function takes two forms, depending on whether concepts be-
long to the detailed level or an aggregated level of a hierarchy. The mapping function 
for the detailed level relates concepts c1

i  and c2
j of the detailed levels Ld 

i and Ld 
j of 

two versions i and j of ontology with the similarity measure Sgd : 

j
d

i
d

iji
gdd LLcccSf ∈∈ j

2121 cet   with ),(:  (4) 

The mapping function of the first aggregated level relates either a concept of the 
detailed level with a concept of an aggregated level or two concepts from aggregated 
levels with the similarity measure Sg_agg. The Sg_agg similarity measure depends on the 
similarity Sgd between the components of the concepts: 
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Components of a concept are children in the hierarchy. We can generalize the map-
ping function for arbitrary aggregated level n using the recursive principle: 

_ _ _ _ _ 1 _ _ 2 1 2: ( ( (...( ( , )))))i j
agg n g agg n g agg n g agg n gdf S S S S P P− −  (6) 

Matrix of Semantic Mapping. The mapping function allows computing the elements 
of the matrix of semantic mapping which relate concepts from two levels of two ver-
sions Oi and Oj of the ontology. We define a matrix of mapping for each combination 
of level of the two versions. Let H (D, Oi) = {c1

i, c2
i …, ck

i … cn
i} be the set of n con-

cepts forming the level L1 of dimension D of the version Oi and H (D, Oj) = {c1
j, c2

j 
…, cl

j … cm
j} be the set of m concepts forming level L2 of dimension D of the version 

Oj. The matrix of semantic mapping M as dimension card(H (D, Oi))×card(H (D, Oj)), 
where card() represents the number of element in a set.  Each of its elements is de-
fined by M(D,Oi,Oj)kl= ƒ(ck

i, c1
j) where ƒ is the mapping function for the detailed 

level ƒd if L1 and L2 are detailed levels and ƒagg  if L1 or L2 is an aggregated level. 
Searching a semantic relation between all possible levels is necessary in order to iden-
tify concepts that may have changed level. 

3.2   Redefined Semantic Similarity Model 

The model described in this section improves the model Matching Distance (MD) by 
allowing us to measure similarity between the features of concepts and presents a new 
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similarity measure for concepts of aggregated levels. Similarity is computed in a three 
step recursive process: (1) between features of compared concepts, (2) between con-
cepts of the detailed level and (3) between concepts of aggregated levels of the 
schema of instance of dimensions, using the similarity values of detailed level con-
cepts. Features can be complex and we include measures of similarity for texts and 
domain values (intervals).  

3.2.1   Features Level Similarity 
Matching Distance model (MD model) is based on the ratio model [19] which sug-
gests that similarity is a function of the sets of common features and sets of exclusive 
features: 

1 2
1 2
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where is C1 the set of features of c1 and C2 is the set of features of c2, ƒ is a monoto-
nous increasing function and α≥0, β≥0  are parameters which give relative importance 
to the sets of exclusive features. In MD model, ƒ is the set cardinality and for a fea-
ture, being part of the set of common features is a binary function, i.e. a feature is or 
is not part of this set, but it cannot be included in the set in a partial way. Matching 
Distance model thus underestimates the similarity of two concepts, because it does 
not consider the degree of similarity of the features. However, we consider that, just 
as concepts, features may share some degree of similarity, so the contribution of a 
pair of features to the set of common features must be related to their percentage of 
similarity, so the first step of similarity assessment is to compute similarity between 
features. Similarity measures employed for text and intervals features are as follows: 

Similarity Measure for Text. The similarity model employed to compare texts is 
generally used in information systems. Segmentation and indexing processes are re-
sumed in figure 2. Result of indexing is a set of informative segments forming the 
lexicon. 
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Fig. 2. Text similarity evaluation 

Similarity is given by cosine measure [26], where each text is represented by a vector 
whose components v1, v2,…vl are frequencies of informative segments of the lexicon : 
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Similarity Measure for Intervals. Replacing summation with integration in the co-
sine measure (equation (8)) produces a vector space similarity measure adapted for 
the case of continuous data, i.e. where the number of dimensions in the vector space is 
infinite [28]. Frequency of terms, which usually quantifies the components of vectors 
representing the concepts, becomes a continuous function of density ρ(r) that indi-
cates distribution of values in a continuous range: 

1 2
1 2

1 1 2 2
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This similarity measure can be applied to compare intervals since they are infinite 
sets of values. Then, the functions of density ρ1(r) and ρ2(r) indicates the distribution 
of the values in the compared intervals and I(c1,c2) represent the intersection function 
between both intervals. Result is a similarity value that lies between 0 and 1. These 
similarity measures for text and intervals are included in equation (10). 

3.2.2   Detailed Level Similarity 
According to the principle that the contribution of a pair of features to the set of 
common features must be related to their percentage of similarity and considering that 
C1t = {A1, A2… Ai…, An} and C2t = {B1, B2… Bi…, Bm} are the respective sets of fea-
ture of type t of concepts C1 and C2 (t=attributes, parts, or role) function of the inter-
section ƒ defined in equation (7) can be defined in the following way: 
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where sim(Ai, Bj) evaluate similarity between features and depends on the data type of 
the feature Ai and Bj. The difference between the two sets of exclusive features is de-
fined by:  

)C()()( and )C()()( 2t12122t1121 ∩−=−∩−=− tttttttt CfCcardCCfCfCcardCCf  (11) 

On the detailed level, global similarity is given by the following, 
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where the different similarity terms now depend on the functions defined by equations 
(10) to (12) which are incorporated in equation (7), where Sn is neighborhood similar-
ity given by equation (2). The advantage of such a model is its flexibility since any 
type of other feature for which it is possible to define a similarity measure giving val-
ues between 0 and 1 can be incorporated in equation (10). 

3.2.3   Aggregated Level Similarity 
Concepts from aggregated levels are formed by the underlying concepts in the hierar-
chy, i.e. their subordinated concepts (the components). In some cases, MD model may 
be insufficient to assess similarity between concepts of aggregated level which may 
have no intrinsic feature. For example, when concept are spatial zones, concepts of 
aggregated levels are an aggregation of concepts of detailed level which are related to 
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them by part-of relations, and thus have no features except parts. Names of concepts 
of spatial zones may be unmeaning for lexical similarity: for example, even if the 
concept forestry station shares no lexical commonality with the concept landscape 
unit, they represent a very close reality in forestry. Following this last remark, parts of 
concepts of aggregated levels may be impossible to compare directly only by their 
names; it is necessary to assess their features similarity in order to know to which 
level parts are similar. In these cases, global similarity of MD model reduces to 
neighborhood similarity, thus not taking into account similarity between components 
of concepts. To extend the MD model to these cases, the following model for similar-
ity assessment between concepts of aggregated level is proposed. Similarity assess-
ment for aggregated levels is a recursive process, i.e. the comparison of the sets of 
components of each concept is also a similarity assessment. Consider that P1= {p11, 
p12… p1i…, p1n} and P2 = {p21, p22… p2i…, p2m} are the sets of components of con-
cepts c1 and c2 respectively. The similarity for aggregated levels between the concept 
c1 and c2 is given by: 
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The function ƒ represents the set of common components to concepts c1 and c2 and 
is evaluated by summing the similarities between the most similar concepts: 
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Image of function ƒ is constrained by the cardinality of the smallest set of compo-
nents, because the cardinality of intersection set must be smaller or equal to the cardi-
nality of the smallest set: ƒ:[0,1]×[0,1]→[0,min{card(P1),card(P2)}]. Differences be-
tween sets of exclusives components are given by the cardinality of components sets 
from which we substract the intersection function ƒ: 

1 2 1 1 2 2 1 2 1 2( ) ( ) ( , )     and     ( ) ( ) ( , )D P P card P f P P D P P card P f P P− = − − = −  (15) 

Global similarity for aggregated levels is given by the following, where ωp is the 
weight for similarity of aggregated level, since this last one evaluates similarity be-
tween parts (component) in hierarchy: 

),()),(),(),((),( 2121212121_ ccSccSccSccSccSS nnffaggpaacllaggg  (16) 

4   Evaluation of the Proposed Approach 

The evaluation of our model has been done using a Java application with forestry spa-
tial data and illustrates the accuracy of this redefined model as well as the increased 
performance of that model compared to the MD model. The data came from four 
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different inventories (1973 to 2002) of Montmorency experimental forest of Laval 
University. Each inventory is associated to a data cube. A forest inventory consists in 
partitioning space in zones characterized by homogeneous properties of term of den-
sity, species, height, etc.(table 1), resulting in a set of basic spatial entities. Basic spa-
tial entities are aggregated in higher level spatial entities, forming the hierarchy of the 
data cube spatial dimensions. For research, regulatory and environmental reasons, the 
specifications of theses spatial zones have changed from one inventory to another.  

Table 1. Example of evolving basic spatial entities (from Montmorency forest specifications) 

Attributes Parts Roles Year in-
ventory Age Height Density ... Species Zone 

type 
1992 [20,40] 

years 
 

[7,12] 
m 
 

[61,81]% 
 

... Mixed zone where leafy tree 
represent over 50 % of ... 

Ecolo- 
gical 

 
2002 [30,45] 

years 
 

[10,12] 
m 
 

[55,81]% 
 

... Mixed zone where white-
birches take over 45% of... 

Ecolo- 
gical 

At first, a simulation was carried out to validate the redefined semantic similarity 
model. Behaviour of the model was evaluated according to a sample of concepts for 
which the percentage of common features with a reference concept follows a linearly 
increasing function. Figure 3 shows that the model follows the predicted behaviour 
compared to the variability of the concepts.  

 

Fig. 3. Behaviour of the redefined model 

Results of similarity obtained with the MD model and our redefined model were 
also compared, showing that for different classes of similarity, the MD model under-
estimates the value of the similarity because it rejects the features which are partially 
similar, whereas the redefined model gives values of similarity closer to the reality 
(table 2).  
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Table 2. Comparison of some values obtained for the redefined model and the MD model 

Zone num-
ber 

MD model Redefined 
model 

 Expected range of values 

23-3 0.3712 0.5874 Average similarity 
11-3 0.1650 0.3990 Low similarity 
2-40 0.1433 0.3784 Low similarity 

12-54 0.0206 0.1639 Very low similarity 

The efficiency of both models was compared by evaluating precision and recall, 
which are metrics currently used in information system:  

mapping reference ofnumber 

mappingcorrect  ofnumber 
Recall and  

mapping detected ofnumber 

mappingcorrect  ofnumber 
Precision ==  (17) 

Expected mapping were manually evaluated using specifications and cartographic 
data for the compared spatial entities. The evaluation was carried out with 25 zones 
identified in the 1984 inventory and 77 zones identified in the 1992 inventory, since 
in 1992 the same surface was divided in smaller entities than in 1984. Results of pre-
cision-recall curves are shown on figure 4.  

 

Fig. 4. Precision-recall curves for aggregated levels (left) and detailed level (right) 

Values were obtained by successively applying decreasing threshold values, 
threshold indicating that beyond this value pairs of entities could be considered simi-
lar and part to the set of detected mapping. Set of correct mapping is a subset of the 
set of detect mapping and corresponds to the pairs of entities that are also part of the 
set of reference mapping. Results show that performance of the redefined model is 
higher than performance of MD model in any point, in particular, the difference 
between both models being more significant in the case of the aggregated level similar-
ity, showing the need for a similarity model specifically designed for aggregated lev-
els, particularly in the case where concepts are related by part-of relations and only de-
fined by their subordinated concepts. Indeed, in this case, the similarity of the MD 
model is reduced to the graph neighborhood similarity and lexical similarity, whereas 
with the similarity for aggregated levels (redefined model), similarity between features 
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is implicitly considered in the recursive function. In addition, figure 4 shows that the 
curves have significant variations (as shown on graphs), reflecting the clustering of 
the similarity values between spatial zones. Distribution of the similarity values is not 
uniform but form clusters because variability of the features of spatial zones (in term 
of density, species, height, etc.) remains limited. Consequently, this results in high 
sensitivity of the recall and precision to weak variations of threshold during the test.  

5   Conclusion and Perspectives 

Our article presented a general approach of semantic mapping between different ver-
sions of geospatial data cube, which is different from other existing approaches in 
multidimensional structures evolution as it considers the case where relations between 
different structure versions are not identified a priori and are affected by semantic 
evolution. The suggested similarity model improves the precision of the semantic 
similarity assessment by evaluating similarity not only between concepts, but also be-
tween their features. The model is flexible and generic and can incorporate any type 
of feature (sound, image, various languages, etc.) for which it is possible to define a 
similarity measure. Then, it can be used in a variety of cases as it allows the integra-
tion of various types of data. Results showed that the effectiveness of the redefined 
model is higher than that of the Matching Distance model. More work is necessary in 
order to integrate these preliminary results to the SOLAP tool (Spatial OLAP), in or-
der to improve quality of temporal queries results in evolving geospatial data cubes.  
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